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Abstract. A new type of cutting plane, termed a decomposition cut, is introduced that can be
constructed under the same assumptions as the well-known convexity cut. Therefore it can be applied
in algorithms (e.g. cutting plane, branch-and-cut) for various problems of global optimization, such
as concave minimization, bilinear programming, reverse-convex programming, and integer program-
ming. In computational tests with cutting plane algorithms for concave minimization, decomposition
cuts were shown to be superior to convexity cuts.
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1. Introduction

In this paper we are concerned with cutting planes for optimization problems that
are given in the form

min{g(x) | x € PN ), (1)

where PC R” is a polyhedron2 C R" a set andy : PN Q2 — R. This includes
a wide range of optimization problems, such as concave minimization, bilinear
programming, reverse-convex programming and integer programming. The integer
program min¢’x | Ax < b, x € 1"}, for example, can be transformed into (1) by
definingp(x) = c’x, P={x e R" | Ax < b} andQ =1".

A cutting planer’x > 6 that reduces P without eliminating a point imPQ
is called a(P, 2)-cut For integer programming the Gomory cut is a well-known
(P, 2)-cut. A Gomory cut eliminates a nonintegral vertex of P without eliminating
an integral solution, i.e. it reduces P but nat 2.

A more general class aP, 2)-cuts is the class afonvexity cutsintroduced
by Tuy [20] and extended by Glover [6, 7]. Convexity cuts have been used, for
example, in concave minimization [4, 13, 14, 20, 21], bilinear programming [12,
15, 19, 22], reverse-convex programming [8, 9, 18] and integer programming [1-3,
23].

Let us suppose that the polyhedron P is full-dimensional and given in the form
P={x e R"| Ax < b}, whereA e R™", b € R" andm > n. Letxo ¢ PN Q be
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a vertex of P that is to be eliminated. A convexity elitx — xo) > 1 is derived as
follows.
First we construct a convex set K such thae int(K) and int(K)N (PNQ) = @.
How this can be done for several different types of optimization problems has been
described in detail elsewhere.
Next we derive a P-containing congxg) as follows. Sincexg is a vertex of
P, there exists aln, n + 1)-submatrix(Ag, bg) of full rank of (A, b) such that
Aopxg = bo. By defining Qxg) = {x € R" | Agx < bo} we have PC C(xp).
xo is the only vertex of Cxg) and there are: edges of Qxp) emanating from

xg, all of which are unbounded. Now lat, u,, ... , u, denote the directions of
these edges:y, uy, ... , u, are linearly independent and we havéx§ = xo +
conduq, us, ..., uy,).

Then we determiné, such thatyy + T.u, is the intersection point of the cone
edge E = {w(r) = xo+tuy | t € Rg} and the boundary of &) if such
an intersection point exists. If such a point does not exist, }.ez Ent(K), we set
7, = 00. In afinal step we choosg with 0 < 7, < 7; and determine the hyperplane
cT(x —xp) = 1 that intersects the cone edged y; () if v < oo and is parallel

to E if 7, = oo, i.e. & = (i 1 ..,%)Q‘lwithQ:(ul,uz,...,un) and

n
% = 0 for i, = 0.

Since K is convex, withxy the convexity cutc’(x — xg) > 1 excludes only
points in the portion of Crp) contained in int(K). We have P Q € P C C(xp)
and int(K)N (PN Q) = @. Thusc’(x — xp) > 1 excludesyy without excluding any
pointin PN, i.e.c’(x —xg) > lis a(P, Q)-cut. The deepest convexity cut, called
anintersection cutis the convexity cut withr, = 7, (see Figure 1(a)). Intersection
cuts are also known as concavity cuts or as Tuy cuts.

The idea behind the convexity cut is to approximate the polyhedron P by the
cone Gxp) and to eliminate only points in the portion of£5) contained in int(K).

A problem with this cut is that the cone() is, in general, a poor approxima-
tion of the polyhedron P (cf. Zwart [24]). Hence the derived convexity cut may
eliminate a large portion of Gp) N int(K), but only a small portion of P int(K).

To overcome this problem we decompose the co(g)dnto 2 suitable cones
that are of dimension —¢, wherer with 1 < ¢ < n denotes the respective level
of decomposition such that the convex hull of these cones contains P. Using these
cones we can derive a cutting plane, calletbaomposition cutvhich is related to
convexity cuts but eliminates a much larger portion of iRt(K) (see Figure 1(b)).

In computational tests with cutting plane algorithms for concave minimization,
decomposition cuts were shown to be superior to intersection cuts. Some problems
could be solved as much as 80 times faster with decomposition cuts than with
intersection cuts.

The structure of this paper is as follows. First pseudovertices and cones derived
with respect to (w.r.t.) pseudovertices are introduced. Then these concepts are
applied to approximate polyhedra by cones. Next we discuss the decomposition
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Figure 1. Intersection cut and decomposition cut.

of cones into cones of lower dimension. Then the procedure for deriving decom-
position cuts is described. The paper concludes with a brief report on numerical
experiments.

2. Pseudovertices and Cones

A vertex xg of the polyhedron P= {x € R" | Ax < b} is a 0-dimensional face of

P. This is equivalent to the conditions th&ty < » holds and that there exists an
(n, n + 1)-submatrix(Aq, bo) of full rank of (A, b) such thatAgxg = by, i.€.x9 =
Aglbo. By dropping the first condition we can extend this notion to a more general
one, as in the following definition.

DEFINITION2.1. LetP= {x € R" | Ax < b} be a polyhedron withA ¢
R™" b € R" and dim(P) = n, and letAx < b include no constraintafx < Bi,
alx < B; with (@], Bi) = A(a], B;) for somes. € R*.

1. Let(A, b) be an(n, n + 1)-submatrix of full rank of(A, b), and letx be the
unique solution ofAx = b. i is called a pseudovertex of P, and the set of
pseudovertices of P is denoted by*YR, ;).

2. If for x € V7*(R,,,) there exists one and only o, n + 1)- -submatrix(A, b)
of full rank of (A, b) such thatAx = b, thenx is called a nondegenerate
pseudovertex. Otherwiseis a degenerate pseudovertex.

3. Iffor x1, X2 € V7 (R,,)) there exist(n, n + 1)- submatrlces{Al, by), (Az, bz)
of full rank of (A, b) such thatA,%; = by, A%y =b,, and(Ay, by) and(As, by)
differ in exactly one row, thefi;, x, are neighbors.

A pseudovertex of P is a vertex if it belongs to P. For a vexigaf P there exists
at least ondn, n + 1)-submatrix(Ag, bg) of full rank of (A, b) such thatAgxg =
bo. If there exists only one such submatrix, thenis nondegenerate. Otherwise
xo IS degenerate. This observation leads to the definition of nondegeneracy and
degeneracy of pseudovertices.

The definition of neighborhood for pseudovertices is an extension of the usual
definition of neighborhood for vertices. In fact, vertices x, of P that are con-
nected by an edge are neighbors, i.e. there &xiist + 1)-submatriceg A1, b1),
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(Ao, by) of full rank of (A, b) such thatd1x; = by, Aoxo = by, and(Aq, b1) and
(A5, by) differ in one row.

We now describe three types of neighborhood for pseudovertices; L &t €
VP (R,,) be nelghbors and letd,, bl) and (A, bz) differ only in the last row,
i.e. there existA, b) € R™ Y"1, Gy, Brn). (Gz.n. Bon) € R With (.0, frn) #
(az.n, ﬁz,n) such that

(A,,b>—(aA b) fori=12 @
Consider
= {x e R" | Ax = b}. (3)

The set G is a line that is intersected by the hyperpladies = B, andal,x =
B2.n. The intersection of G witd! ,x = By, defines the pseudovertéx, and the

intersection of G witrﬁg WX = 52,,1 defines the pseudovertéx. Now we consider
the half-lines

Gi={reGlaj,x<pr)and G ={x € G|aj,x < fa.}, 4)

which originate afc; andx,, respectively, and are contained in G. There are three
possible cases, wheth&s € G; or x; € G, or both. This leads to the following
types of neighborhood:

o Nj-neighborhoodi,, x; € G; N Gy;

o Ny-neighborhoodx; e GiN Gy, A X2 ¢ G1 NG, or
X1¢G1NGy A X2 € G1 NGy

o Nsz-neighborhoodi,, x; ¢ G N Go.

The N1, N2, N3 neighborhood concepts are equivalent 0G5, being nonempty
and bounded, unbounded, and empty, respectively.

EXAMPLE 2.1. Let the polyhedron P of Figure 2 be described by Br € R® |
alx <Bi,alx <Bo, ..., akx <Bes}. In Figure 2(a) the facetsc € P | a/x = g;} of
P are denoted by;FIn Figure 2(b) the pseudovertices of P are indicated by dots.
For example, the intersection point of the hyperplamas= B3, alx = B4, alx = ps
defines the pseudovertéx, and the intersection point of the hyperplanés = g;,
ajx = B4, aix = Bs defines the pseudovertéx. According to Definition 2.1.3f;
andx; are neighborst; andx; lie on the line G= {x € R | ajx = B4, alx = Bs}
(see Figure 2(b)). Gand G are defined by & = {x € G | alx < B3} and
Gy = {x € G| ajx < B1}. We havealx; > B, andalx, > Bs. Therefore we have
G N G, = ¢, andx; andx, are N3-neighbors.

All pairs of pseudovertices lying on one of the lines indicated in Figure 2(b) are
neighbors, e.gr, andxs are neighbors, as aiig andx,. Similarly, we can verify
thatx, andxs are N,-neighbors, and thai; andx, are N1-neighbors.
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Figure 2. A polyhedron and its pseudovertices.

DEFINITION 2.2. Leti € V/(R,,) be nondegenerate withi = b, where
(A, b) is an(n, n + 1)-submatrix of full rank of(A, b).
1. The cone ) derived w.r.t. the pseudovertaxis defined by

C(X) ={x e R" | Ax < b}
=X + condiiq, uy, ..., U,),

whereiq, u,, ... , i, are directions of the edges of O.

2. Aset SC V7*(R,,) of nondegenerate pseudovertices containing/nmeigh-
bors is called av-set of V*(R, ). Forx € S we denote by £&x) the face of
C(x) which is spanned by the vectaiig such that the edgeE= {x + Ay |
S Rg} and its negative extension E= {x + Aix | A € Ry} contain no
pseudovertex in §x}.

In Definition 2.2 only cones derived with respect to nondegenerate pseudovertices
are considered. If a pseudovertéxe V?*(R,, ) is degenerate, there are several
ways to deal with this. One is to make all pseudoverticesef® € R" | Ax < b}
nondegenerate by slightly perturbing the veétoh second is the following, which

is adopted from Balas [1]. Sinceis a pseudovertex, among the constraints that
define P we can always findlinearly independent constraints that are binding for

X. Let P denote the polyhedron obtained from P by omitting all the other binding
constraints fork. Then we have EZ P, andx is a nondegenerate pseudovertex of

P'. Hence we can derive the conegi¢Cand G(x) w.r.t. P.

COROLLARY 2.1. LetP = {x € R" | Ax < b} be a polyhedron witldim(P) =
n, and letS = {x1, x», ..., x;} be anN-set ofV”*(R,,)). Let Asx < bs denote
the system obtained frorhx < b by omitting all constraints that are not binding
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Figure 3. Cones derived with respect to pseudovertices.

for at least one pseudovertex 8) and letP; = {x € R" | Asx < bs} be the
corresponding polyhedron.

Then we hav® C R, andSiis also anN-set of V7 (R, _, ). For ; € Sthe
conesC(x;) andCg(x;) derived w.r.t.P; are identical with the corresponding cones
derived w.r.t.P.

Proof. The systemAgx < bg that describes Hs a subsystem of the system
Ax < b that describes P. Hence, we have PP.

Since S is anv-set of VV*(R,,)), each pseudovertex in S is nondegenerate.
Thus, forx; € Sthere exists one and only ote n + 1)- -submatrix(A;, b;) of full
rank of (A, b) such thatd, X = b;. Hence(A;, b;) is also the only submatrix of full
rank of (As, bs) such thatd;x; = b;. Thereforey; is a nondegenerate pseudovertex
of B, and the cone G;) = {x € R" | A;x < b;} derived w.r.t. Pis identical with
the cone derived w.r.t. P.

Since forx;, x; € S the corresponding:, n + 1)-submatrices of full rank of
(A, b) and(Ag, bs) are identical, the neighborhood relations for pseudovertices in
S remain the same insRAs in P. Thus S is also aM-set of \/"S(PS(ASV,@) and the
cones G(x;) and G(x;) derived w.r.t. Pare identical with the corresponding cones
derived w.r.t. P. 0O

EXAMPLE 2.2. The cones derived w.rit, x, € V7*(R,,) are
C(%1) = {x € R®| alx < B3, alx < B, alx < ps)
with C(fl) = fl + Condﬁl’l, ﬁl,Z’ ﬁ1’3), and

C(%2) = {x € R® | alx < 1, alx < s, alx < Bs)



HOW TO EXTEND THE CONCEPT OF CONVEXITY CUTS 377

with C(x;) = X1 + condiiy 1, 12, t13) (See Figure 3(a)). Sincg andx, are
Ns-neighbors, the set & (X, x»} is anN-set of V*(R, ,)). Let E ; denote the
cone edgdx; + Ait; ; | A € R{} and let E; be its negative extension, i.efijz

{X; + Au; j | & € Ry}. We havex; € E; ; andx; € E; ;. The other edges of @)

and Q&,), and their negative extensions, contain no pseudovertex [#:$ and
S\{x,}, respectively. Hence, we have(®;) = x; + con€iiy 1, i1 2) and G(x;) =

X2 + CONdiiy 1, ii22) (see Figure 3(b)).

3. Approximation of Polyhedra by Cones

For a pseudovertex; € V7(R,,) the corresponding cone(&) contains the
polyhedron P= {x € R" | Ax < b}, i.e. P C C(x1). The idea is to choose

an N-set S= {x1, X2, ..., X} and to replace the cone(&;) by the collection

of cones G(x1), Cs(X2), ..., Cs(x;). We shall now verify by Theorem 3.1 that
the convex hull of these cones contains P. Therefore (ctgg\éscs(ii)) provides

an approximation of the polyhedron P. The following corollary will be helpful in
proving Theorem 3.1 and can be proved itself by applying concepts described, for
instance, by Schrijver [17], Chapter 8.

COROLLARY 3.1. Let P be a pointed polyhedron witdim(P) > 2, and let
Fi.Fo.... . Fy be the facets dP. Then we have = con(J’;_, F)).

THEOREM 3.1. LetP = {x € R" | Ax < b} be a pointed polyhedron with
dim(P) = n > 2, and letS # ¢ be an N-set oV”*(R,, ). Then we havé C
comv(Uz, s Cs(Xi))-

Proof. The idea behind the proof is the following. We consider the P-containing
polyhedron P (cf. Corollary 2.1) and prove that each of its facets is contained
in conv(UiieSCS()Z,»)). Hence, the convex hull of the facets of B also con-
tained in ConVUg,-es Cs(%;)). However, it follows from the definition of Rhat
P; fulfills the conditions of Corollary 3.1. Therefore, the convex hull of its facets
contains Ritself. Hence, we have & Py, C conv(UiieSCS()Z,»)), which proves
the theorem. Therefore, we only have to verify that each facef isfédntained in
COﬂV(U;iesCs(ii))- We prove this by induction in.

n=2: Suppose that P= {x € R? | Ax < b} with dim(P) = 2 is a pointed
polyhedron and let S# ¢ be anN-set of V*(R,,). Let F;, be a facet of §

i.e. dim(F;,) = 1 and there exists a constra'mj@c < Bj, of Asx < bs such that
Fipo={x ek ajflx = B;,}. It follows from the definition of Pthat there exists

X; € Ssuch thabjTli,» = B;,. Sincey; is a nondegenerate pseudovertex, there exists
exactly one more constraiijzx < Bj, of Asx < bs such thata]TZ)Z,- = Bj,, and
ajx=pj, andalx = B;, are linearly independent. Thus, we have

CE) = {x e R?|ajx < Bj.alx < Bjy)
= X; + con€u; 1, i; 2), )
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wherei; 1,4, 2 € R? are directions of the edges of &), i.e. E1 = {x; + Au;1 |
reR$Yand BEp = {X; + Adl;2 | A € RS}, where

Ei1={xeR?| a};x < ,Bh,ajgx = Bj,} and
Eo={xeR?|ajx =Bj.ax < B} (6)

Since F, = {x € Ry | ajx = B;,} is a facet of Panda]x < B, is a R-describing
inequality, we have [ C E; . Note that E, is not necessarily an edge of the cone
Cs(x:)-

Case 1:Suppose that £ is an edge of Qx;). Then we have f C E;, C
Cs(X;), which verifies that F; < conv(UiieSCS(il-)).

Case 2:Suppose that & is not an edge of &x;). Then it follows from the
definition of the cone Qx;) that there exists; € Swithx; € E; > UE, \ {%;},
where E, denotes the negative extension @ EThis implieSajTlil =p;, (see (6)),
i.e.x; andx; are neighbors.

Sincex; is nondegenerate, there exists exactly one more consﬁéz’m{ Bjs
of Asx < bs such thata};il = Bjas anda};x = B;, and a};x = B, are linearly
independent. For the neighbatsandx; let us consider the line & {x € R? |
alx=p;} (see (3)) and the half-lines

Gy = {x e R?| ajTlx = B, arzx

2.7 T
G ={xeR | a;x = Bjy, a;x

(see (4)). We have F= {x € s | ajx = B}, andajx < B;, andajx < B, are
P; describing constraints. This implies

Fi €GiNG,. (7)

Since S is arV-set, the neighbors;, x; € S have to beV;- or N3-neighbors. We
claim thatx; andx; are N;-neighbors, which they are, since if we assume fhat
andx; are N3-neighbors, then we have;@ G, = ¢ and by (7) we have fF = 0,
which contradicts dinF;,) = 1. Sincex; andx; are Ni-neighbors, GN G; is
bounded, and we have;& G, = conux;, x;). Hence, by (7) we have

F;, € convx;, %) € conv(Cs(X;), Cs(X))), (8)

which verifies that |, € conv(U);ies Cs(x))) for Case 2.

F;, is an arbitrary facet of £Based on the considerations at the beginning of
the proof this proves Theorem 3.1 for= 2.

n—1 — n:Let Theorem 3.1 hold for all full-dimensional and pointed polyhedra
in R* with 2 < k < n — 1. Suppose that - {x € R" | Ax < b} is a pointed
polyhedron with diniP) = n > 3, and let S be aw-set of VV*(R, ,)). Let F;, be a
facet of the P-containing polyhedrog £ {x € R" | Asx < bs}, and IetajTlx < Bj
be the corresponding constraintafx < bssuchthatk, = {x € P | ajTlx = Bj}-
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We define § := Snaff(F;, ), where aftF;,) is the affine hull of F,, i.e. aff(F,)
= {x € R" | ajflx = ;). It follows from its definition that Pis a pointed
polyhedron with dintRs) = n, and that § is nonempty. Furthermore, because
of S;, € Sthe set § is also anV-set.

Since Ris a pointed polyhedron with ditRs) = n, its facet F, is also a pointed
polyhedron with dintF;,) = n—1. To apply the induction hypothesis we have to

map F, into R"~1. To do this we choosg&; < S; and a basigvy, v, ..., v,_1}
of the linear space aff;))—x; = {v € R" | v+ X;; € aff(F;,)} and define with
Vi, = (v1, vz, ... , v,_1) € R™"! the mappings

¢, : aff(F;) > R"withe;, (1) = (VI V) VI — %)

¢ R > aff(Fjwithg H(v) = Vi, y + . (9)
¢j, : aff(F;) — R"~! sets up a one-to-one correspondence betwe¢R;gffand
R'~*, andg;':R"* > aff(F),) is its inverse. We have

¢]1(F]1) = {y S Rn_l | As(ley +i]1) g bSv Clel(ley +i]1) = ﬂ]l} (10)

¢;,(F,) is a full-dimensional and pointed polyhedronRi~*, and¢;, (S;,) # ¥
is anN-set ofg;, (F;). Thus, by defining; := ¢;,(x;) for x; € S;, we get by the
induction hypothesis

¢]1(F]1) g COI’]V( U /C\tﬁjl(s_/‘l)(j;i))’ (11)
yiE(le(Sl)

Where@jl(sj (3, denotes the respective cone deriveRn. Sincegbj‘l1 R
aff(F;) is affine and linear we have

¢j‘ll<conv< U 6‘7’/1(5./1)(5”'))) =Conv( U ¢j_11<6¢11<3/1>(¢fl(ii))))'

yie(bjl(sjl) f[GSjl

Furthermore, we hav¢j‘1l (@H(s,_,l)(cbjl(ii))) = Csjl(i,»)|aﬁ<pjl), where by (;,_/_l(i,»)
we denote the cone that is derivedRfy w.r.t. the polyhedrondaind theN-set S,
and by C;/_l(il-)|aﬁ(pjl) we denote the conesglj(i,») Naff(F;). Therefore, by (11) we
get _ _

F, € conv [ Csjl(ii)|aﬁ(Fjl)>- 12)
f,‘ESjl
We have G, (x))lafiF;,) = Cs(Xi)lafir;,) S Cs(Xi) and §; < S. Thus

F, C conv( U Cs(iri)) c conv(UCS(i:i)).

Xi€S); %ieS
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Figure 4. Cutting planes and approximation of the reduced polyhedron by cones.

F;, is an arbitrary facet of 2Based on the considerations at the beginning of the
proof we have therefore proved Theorem 3.1. O

For anN-set S of V*(R,,,) conv(UiieSCS(ii)) provides an approximation of
the polyhedron P. Our aim is to derive(R, ©2)-cut. To show that a cutting plane
d™x > §is a(P, Q)-cut, we have to verify that P {x € R" | d’x < §} andQ are
disjunct. To do this we shall provide, by Theorem 3.2, a method that allows us to
derive an approximation of the reduced polyhedran & € R” | d’x < §} from
the collection of cones £x;), x; € S. To simplify notation, we hereafter denote
by H,;, H®,, Hf,, HD, and H;, the setdx € R" | d"x = §}, {x ¢ R" | d"x > §},

d,s’ ds’

{x eR" |dTx > 8}, {x e R" | d"x < 8}, and{x € R" | d"x < §}, respectively.

EXAMPLE 3.1. The pseudoverticas andx, areNi-neighbors (cf. Example 2.1).
Since S= {x3, X4} is anN-set of VW*(R,,,), we have PC conuCs(x3), Cs(X4)).
Consider the cutting plang'x > §; with d{x; < §; andd%4 < 81 in Figure 4(a).
We shall verify by Theorem 3.2 thatrﬁ’Hdelysl C conv(Cs(X3) N Hdel_al, Cs(%2) N
Hi.sl)'

The situation is more complicated for the cutting pldfe > §, with dlx; < &,
andd{h > §,, which is indicated in Figure 4(b). We havaFI[]@ﬂ2 Z con(Cs(x3)N
Hd@m, Cs(X2) N Hdez_az). However, by Theorem 3.2 we shall verifyrIPHg,ez_62 -
conv(Cg(x3) N H?Z,SZ, %4) + condry, 72), wherefy, 7, € R® are directions of the
half-lines that are defined by the intersection of Hwith 2-dimensional faces of
C(x3) and Qxy).

Theorem 3.2 will be proved similarly to Theorem 3.1. Hence, we need an analogue
to Corollary 3.1.

COROLLARY 3.2. Let P be a pointed polyhedron withim(P) > 2, let Fy,
Fo, ..., F, be the facets oP, and letd’x > § be a cutting planed € R"\ {0},
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§ € R). Then
h
PNHY, = conv< U [Fj N Hfs]) + condr), (13)
j=1

wherer is the direction of the half-lin® N H, ; if

¢ #PNHS, #P;
dim(PNHY)) = dim(P) = 2;
PN H,sis unbounded

andr = 0 otherwise.

Proof. Suppose thatRH?, = . Thenwe have FMHS, =¥ (j = 1,2, ... , h),
and Corollary 3.2 follows immediately. Suppose thatt A, = P. Then we have
F; N Hfs = F;, and Corollary 3.2 follows from Corollary 3.1.

Therefore, let us suppose tiats PNHS, # P. Since P is pointed the polyhedra
PNHY, and MH, ; are also pointed. We have to distinguish between BinHS,) <
dim(P) and dimPN HY,) = dim(P).

Case 1:Suppose that di® N HY,) < dim(P). Then PN HS, is a subset of a
proper face of P. However, every face of P, except for P itself, is the intersection
of facets of P. Hence, there exists a facgtdf P such that P HS, € F;; N HS,.
Thus, because of A HY, € PNHS, for j =1,2,... , h we have (13).

Case 2:Suppose that difPNHS,) = dim(P) > 2. The facets of the polyhedron
PNHY, are subsets of the setsWM, ;, FLNHS,, F2NHS,, ..., F,NHS,. It follows
from PN H,; CPNHY, and 5 NHY, € PNHY, for j =1,2,...,k, and from
Corollary 3.1 that

h
PNHS, = conv( U [Fj N Hd@ﬁ], PN Hd,s>. (14)
j=1

Sinced # PNHY, # P, the set M H,; is a facet of AN HY, (cf. Schrijver [17],
Theorem 8.1). We verify (13) for Case 2 by considering the following cases.

(a) Let us suppose that didnN H,;) = dim(P) > 3. PN H,; is a facet of
PN HS,, i.e. dmPNH,,) = dimP) —1 > 2. By Corollary 3.1 R\ H,, is the
convex hull of its facets. However, each facet of Pl ; is a subset of at least one
of the sets FN HF,. Thus, PN H,; can be omitted in (14) and we therefore have
(13).

(b) Let us suppose that difAn H,;) = dim(P) = 2 and that PN H,; is
bounded. M H,; is the convex hull of its vertices. However, each of these vertices
is contained in at least one of the sets'FHS,. Thus, PN H,, can be omitted in
(14) and we therefore have (13). '

(c) Let us suppose that difN H,,) = dim(P) = 2 and that PN H,; is
unbounded. We then haverPH,; = {X + Ar | A € R{}, wherex is a vertex
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of PN HY,, i.e. & is contained in at least one of the sets(FHS,. Thus (14) is
equivalent to (13). O

THEOREM 3.2. LetP = {x € R" | Ax < b} be a pointed polyhedron with
dim(P) = n, let S # ¥ be an N-set o¥/”*(P,,,), and letd’x > § be a cutting
plane withd € R"\{0}, § € R such thatCs(%;) € HY, for all x; € SNHZ,.

Let7y, 7o, ..., 7 € R" with ||7] = 1 be all vectors fulfilling the following
conditions. For there exists a pseudovertéx € SNH_, and a face.;, of C(x;,)
with dim(L;,) = 2 such that for

Q=[] CE)law,)

F;eSnaff(L;, )

the following hold:Q; N Hfs # Qk, dim(QNHS,)) = 2, andQ, NH,, is a half-line
with directionr;. With the above notation we have

PNHS, ¢ conv( U [CS(JE,») N Hfs], SN) + CONEF#y, o, ... , Ty)
X‘,'Ese

where byS® andS" we denote the seBNHY, and{%; € S\HY, | 3 5 € SNHY, :
X; andx,; are neighbor$, respectively.

Proof. As in the proof of Theorem 3.1 we consider the facetd, ... , F, of
the P-containing polyhedron; cf. Corollary 2.1). It follows from the definition
of P; that R fulfills the conditions of Corollary 3.2. Thus, to prove Theorem 3.2 it
suffices to verify that

h
conv( U [Fj N H%D + congr)

j=1

C conv( U [Cs(ii) N Hd@_s], SN> +condry, o, ..., ). (15)
iiese

By defining theN-set § := SN aff(F;) we have $ # ¢, and in the case of
F; N HS, # ¢ we also have SN HS, # @. The former follows from the definition
of P;, and the latter can be seen as follows.

Let F;, be an arbitrary facet ofsBuch that |, N HY, # ¢, and let us assume
Si, NHE, =, i.e. S, € Hj,. Itfollows from the condition Q%) C HE, for all
X € SNHY, and from G, (%) larir,,) S Cs(%) that we have € (¥ larir,,) S HJ,
forall X; € S;, € Hf,. However, because of (12) this implieg = H;, which
contradicts F, N HS, # ¢,

Based on these considerations, we verify inclusion (15) by inductian in

n =2: Suppose that P= {x € R? | Ax < b} is a pointed polyhedron with
dim(P) = 2. Let S# ¢ be anN-set of V*(P,,,), and suppose that'x > §is a
cutting plane fulfilling the conditions of Theorem 3.2.
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Let F;, be an arbitrary facet of the P-containing polyhedrgrsuh that F; N
HS, # ¥, and letx; € S;, N HY,. According to the proof of Theorem 3.1, the facet
F;, is contained in the edge,E = {X; + Ait;2 | A € Rg} of the cone Cx;) =
X; + condu; 1, i; ) (cf. (6)). However E, is not necessarily an edge of the cone
Cs(x:)-

Case 1:Suppose that £ is an edge of the conesG;). Then we have fF N
HS, € Ei» N HS,, which implies

Fi NHS, € Cs(&) NHZ, with §; € S°. (16)

Case 2:Suppose that & is not an edge of €x;). According to the proof of
Theorem 3.1 there exists avy-neighborx; of x; with X; € S;, such that i, C
conv(x;, x;) (cf. (8)). If x; € S;; N Hfs C S° we therefore have

Fi N HS, € cony( Co(%) N HE,, Co(&) NHE, ) with &, € S° (17)

d,s?
and ifx; ¢ S; NHY, we have
Fi NHS, € cony( Cu(®) NHS,, & ) with & € $°, 5 € S". (18)

Let F, F,, ..., F, be the facets of {2 Since F, is an arbitrary facet of Swith
F,, NHS, # ¢, it follows from (16), (17) and (18) that

h

conv( U [Fj N H%D c conv( U [CS()E,-) N H?,s], SN), (19)

j=1 X‘,'Ese

To prove inclusion (15) for = 2 it remains to be verified that coge C condr,
72, ..., 7). Forr = 0 this is obviously true. Therefore, let us suppose thgt 0.
According to Corollary 3.2, the vecteris the direction of the half-line H, ; if
B #PsNHY, # Ps, dm(PsNHY) = 2, and RN H,; is unbounded. It holds that:

(1) There exists;, € SNH . Indeed, suppose that'$H;, = ¥, i.e. SC HZ,.
Then it follows from the condition &x;) < H® for all 5, € SN HY, and by
Theorem 3.1 that< conv(| J; . Cs(%;)) C Hj?s, which contradicts dirfPs N
HS,) = dim(R) = 2.

(2) Letx;, € SN H,. It follows from the definition of Pthat with respect to
L, := C(x;) 7 := r/||r| fulfills the conditions of the vector& in Theorem 3.2.

Hence, we havé € {ry, 7, ..., 7;} such that cong) = condr). This verifies
inclusion (15). Based on the considerations at the beginning of the proof we have,
therefore, verified Theorem 3.2 far= 2.

n—1 — n:Let Theorem 3.2 hold for all full-dimensional and pointed polyhedra
in R¥with 2 < k < n—1. Suppose that B {x € R" | Ax < b} is a pointed
polyhedron with dingP) = n > 3. Let S be anvV-set of V*(R,,,) and suppose
thatd”x > § is a cutting plane fulfilling the conditions of Theorem 3.2. Let be

f,‘GS
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an arbitrary facet of the P-containing polyhedren=P{x € R" | Asx < bg} with
F, NHS, # ¢. R is pointed and because of diRy) = n we have diniF;) = n—1.
Leta X < Bj, be the corresponding constraint &fx < bs such that f; = {x €
P | a}lx = B}

With the nonemptyN-set S, := SN aff(F;) of VPS(PS(ASJS)) we define the
corresponding setssSi=S;, NHY, and § := {%; € S;;\HY, | 3% € S;, NHY, :
X; andx; are neighbors

To apply the induction hypothesis we have to magrff into R"~1. To do this
we consider the mapping;, : aff(F;,) — R with ¢, (x) = (VT )‘1VT(x
%,,) and its mversegb]‘l : R o aff(Fy,) with ¢71(y) = Vj,y + &5, which
we defined in the proof of Theorem 3.1 (cf. (92@,1(F]1) is a full-dimensional
and pomted polyhedron iR"~1 (cf. (10)) andg;, (S;,) is anN-set of¢;, (F;,). We
have¢]1( ﬁaff(Fjl)) ={y e R | dT(V,y +JE,~1) < 8} and by defining
d:=d"v, 3= 5-d'x  andAS; == {y € R"™ | dy < 3} we therefore have
¢i(HS, N aff(Fjl)) HM and

¢11(Fjl N Hde,a) = d’jl(':jl) N /H\Je,é' (20)

The cutting plana/ﬂy > 3 fulfills the conditions of Theorem 3.2. By defining
yi :i= ¢, (x;) for x; € S;; we get by the induction hypothesis

¢ (F;) NA; gconv( U [6¢_,1<s,1>@,->mﬁfg],%(sﬁ))

Jied), (S5)
+ conery, T2, ... . Try), (21)

where C¢, LS )(¢>]1(xl)) denotes the cone derived R"™! w.r.t. the polyhedron
o, (Fj) and theN - -setg;, (S;,). Itis not hard to verify

0321 (Coisp @5 ) A, ) = Cs, (Blans) NG (22)
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Therefore, by (21) and (20) we have

Fi NHS, €0t (conv U [6¢j1<sf1>@i> N ﬁfg], ¢,-1(Sj{)>
Ji€$)y (S5)

+ conery,, 7z, ,?,,1))

= conv< U ¢! (6(1,_,1(5_,1)(?,-) N ﬁ?g), 871)

Ji€d)i (S5)
+con& V71, , Vi, s ooy ViTey) (cf. (9)

22 ~
(:)conv< U [Csjl(xi)laﬁ(Fjl)dee,s]’Sﬁ>

X €S;
i i1

+ conery, ;... Try))

with 7, := V7%, /IIVj, 7, |- Itis not hard to verify thak,, fulfills the conditions
in Theorem 3.2. Because of'Sc S°, Sj."l c gV, Cs, (%) afir,) NHF, S Cs(F) N
HS, and{Fljl, Fojsnee sy} CAFL Foy oo T} WE have

F,NHS, < conv< U [CS()E,-) N Hfs], SN) + CONEFy, o, ... , 71).
i,-ese

F;, is an arbitrary facet of fwith F;, N H% #@.LetF, F,, ..., F, be the facets
of P,. Thus we have

h
conv( U [Fj N H%D gconv( U [Cs(il-) N Hd@_s], SN> (23)
j=1 X €SP
+ congry, ro, ..., Tt).

Since din{P;) = dim(P) > 3, in (15) we have = 0 (cf. Corollary 3.2). Hence, by
(23) we have verified inclusion (15) far> 3, which proves Theorem 3.1. O

4. Cutting Planes and Cone Decomposition

To derive a convexity cut as described in Section 1, we suppose to have a nonde-
generate vertexg of the polyhedron P= {x € R" | Ax < b} and a convex set K

such thatyy € int(K) and int(K)N (PN Q) = @. A convexity cute’(x — xp) > 1
eliminatesx, together with a portion of Gp) N int(K), and eliminates no points in

PN Q. However, in general, the cong£g) is a poor approximation of P.
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To derive deepe(P, 2)-cuts we utilize the concepts of the previous section to
get a better approximation of P. The main idea is the following. As a nondegenerate
vertex of P,xg is a nondegenerate pseudovertex. By choosing a suifdkdet

= {X1, X2, ..., X;} such thatty € S and SC int(K), we replace the cone (&)
by the collection of cones {x,), Cs(X2), ... , Cs(x)). It follows from Theorem 3.1
that PC conv(U);ies Cs(x;)). With respect to this approximation of P we derive a
(P, 2)-cut. The basis for deriving such a cutting plane is given in the following
theorem, which can be proved by the inclusion provided by Theorem 3.2.

THEOREM 4.1. LetS = {x1, X, ... , x;} be anN-set ofV7*(R, ,)) such thatSC
int(K), letd”x > § be a cutting plane such th&s(x;) € H®, for all ;; € SNHY,,
and letry, 75, ... , 7; be all respective vectors fulfilling the conditions of Theorem
3.2.If

(A) d'x; £sforall x; € S;

(B) Cs(x;) NH,, Cint(K) forall x; e SNH_,;

(C) x + condFy, 7, ... , 7)) C int(K) for all x € int(K),

thend™x > §is a (P, Q)-cut.

The existence of a cutting plam€x > § fulfilling the conditions of Theorem 4.1
is not ensured for an arbitrary’-set S with SC int(K). Furthermore, under the
assumption of existency the depth of the cutting plane depends on a reasonable
choice of theN-set. In this section we are concerned with the construction of a
suitableN-set S.

S will be derived in a series of steps. Starting with ffieset $ = {x1} we
gradually enlargegsuchthat§< S, € --- € S, C int(K) where §, S, ... , S,
are N-sets of V*(R, ). When deriving thes@/-sets we have to ensure that there
always exists at least orig € S; such that diniC (x;)) > dim(Cs , (X)), because
otherwise we have

PC conv( U Cs, (%) ) C conv( U Cs,+1(xz)> (24)

Xi€S Xi€S1

and there is no benefit in enlarging tNeset S to theN-set S, 1, i.e. the approxim-
ation of P derived with respect tq.S is not better than the approximation derived
with respect to

To construct suchv-sets we extend the notion of neighborhood of pseudover-
tices to cone edges. This is based on the following observation. Let S Nesah
of VP (R,,), and letxs, X, € S be neighbors. Thus the correspondingn + 1)-
submatriceS Ay, b1) and (A,, b,) of full rank of (A, b) differ in only one row,
i.e. there exists am — 1, n + 1)-matrix (A, b) that is a submatrix of A4, ;) and
(Az, by) (see (2)).

For an edgéE; of the cone @x;) = {x € R" | Alx < bl} n—1 constraints of
Aix < by are binding. If forE; all n—1 constraints ofix < b are binding, thertt;
or its negative extension contaifis Thus in this cas€&; is not an edge of &x1).
Hence for every edge of((x;) n—2 constraints ofix < b are binding. The same
holds for the cone §x»).
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DEFINITION 4.1. LetP= {x € R" | Ax < b} be a polyhedron with difP) = n,
and let S be aw-set of VV*(R, ).

1. Letiy, %, € S be neighbors, and Iet, b) be the corresponding: — 1, n +1)-
submatrix of(A1, b1) and(A,, b,) (see (2)). An edgé&; of Cs(i;) and an edge
E, of Cs(X,) are called neighbors if fdg; andE, the same:—2 constraints of
Ax < b are binding.

2. LetS= (X1, X», ..., %}, and letR = {(E1, By, ... , E;} be a set of cone edges,
whereE; is an edge of @X;). The set of cone edges;® N-isomorph if for
every pairx;,, %, € S of neighbors the corresponding ed@es E;, € Rs are
also neighbors.

EXAMPLE 4.1. The pseudoverticeg andx, of Examples 2.1 and 2.2 arg;-
neighbors. Thus S= {iy, %,} is an N-set. With AT = (a4, as) andb” = (B4, Bs)

we can see that for the cones(€) and G(&,) the edges€; := E11, B := Ex
and the edgeB; := E; ,, E, := E, are neighbors, respectively (see Figure 3(b)).
Hence, we have th&-isomorph sets R= {E; 1, E» 1} and B = {Ej 2, Ez ).

With the following theorem we lay the foundation for the construction of suitable
N-sets of V*(R, ).

THEOREM 4.2, LetP = {x € R" | Ax < b} be a polyhedron withlim(P) = n,
let S = {x1, X2, ..., x;} be anN-set ofV”*(R,,), and let the set of cone edges
Rs = {E1, B, ... , E/} be N-isomorph.

Furthermore, let].x < ;- anda/.x < - be constraints oftix < b such that
fori,k=1,2,...,1the following hold:

(A) al.x; = Bj- anda.x; # B;

(B)E C{x eR"| ajT*x < BjyandE Z {x e R" | ajT*x = Bj+};

(C) The hyperplane’x = B« intersectsE; U E; at a pointx,;;, where if it

intersectsE;, thena/. ; < B+, andal. %; > B otherwise;

(D) for x;,; exactlyn constraints ofAx < b are binding;

(BE) X141 # Xpqu fori # k. R
LetS := {X/+1, X142, ... , Xz}. ThenS = SU S is an N-set ofV”* (R, ) and we
have

dim(Cq(x:)) = dim(Cys(x;4)) = dim(Cs(X;)) — 1

for all ii €S, )EI-H' eS.

Proof. Sincex; € S is a nondegenerate pseudovertex there exists a unique
(n, n + 1)-submatrix(A;, b;) of full rank of (A, b) such thatA;%; = b;. Because
of condition (A) for allx; € S w.l.o.g. we have

= (i) e b= (20)
A = - and b; = M R (25)
( Ai\() bi\(1y
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where by(A;\(,, bi\(,) we denote the matrix we obtain by eliminating tité row

of (A;, b;) for j € {-}. For an edge of the cone(§) = {x e R" | A;x < bj}n—1
constraints ofd;x < b; are binding. Thus, because of (25) and condition (B) for
E; € Rs we have

E={xeR"| ajT*x Bjs, Anmx = by}

According to condition (C) the hyperplang¢ x = g+ intersects the lin&; UE, at
X;4i- With

A= @) and b= (P (26)
™ Ai\() ™ biv(y

we therefore have,; %,4; = by.;, where(A,4;, by;) is an(n, n + 1)-submatrix of
full rank of (A, b), i.e.x;; € VP*(R,,,). Because of condition (D) the pseudover-
tex x;,; is nondegenerate.

It follows from (25) and (26) that; andx;,; are neighbors. Because of condi-
tions (B) and (C); andx,,; are N;1- or N3-neighbors. Furthermore, sincéi\{l},
biqy) in (25) and (26) is uniquely determineg,,; is the only pseudovertex in

= {X;41, X142, ... , Xz} that is a neighbor of;, and converselyy; is the only
pseudovertex in & {x1, X, ... , x;} that is a neighbor af, ;.

S is anN-set and therefore contains no pairgf-neighbors. Furthermore;
andx;,; are N1- or N3-neighbors. To prove th& = SU S'is anN-set it remains
to be verified that Scontains naV,-neighbors.

By (25) and (26) we can see thaIH, ilﬂ € S are neighbors iff;, ¥; € S are
neighbors, |e(Al\ oy ,\{1}) and (A]\{l}, ,\{1}) differ in only one row. Suppose
thatx;, x Xj € Sare ne|ghb0rs and thm,\{l}, ,\{1}) and(A]\{l}, ]\{1}) differ in the
last row, i.e. (al 0 ﬁl n) £ (a] . ﬁm). We have to verify thaf;; andx;; are Nq-
or N3-neighbors. By defining

= {x c R" | A~i\{1,n}x = Ei\{l,n}}

with dim(A) = 2 for the neighbors:;, x; the corresponding line (3) can be de-
scribed by G- = {x € A | a]lx = B;+}, and for the neighbors,;, x;,; the line
(3) can be described by,G= {x € A | al.x = B}

The pseudovertice§; andx; are defined by the intersection of the ling-Gvith
the hyperplaneéfnx = Bin anda] WX = ﬂj,n, respectively, and,; andx;, ; are
defined by the intersection of,Gwith the hyperplaneg/, x = Bin and&;nx =

B i.n, respectively. We have to distinguish betweén and N3-neighborhoods of;
andx;.

Case 1:Suppose thaf; andx; are Ni-neighbors, i.ea/, <ﬁl " anda] WX <

,BJ,,,. If conv(X;, X;4:) N coNU(X;, X;4;) = ¥, thenai,nxgﬂ < ﬂl,,, anda]’nx1+l <
Bjn, 1.€.X4; andx;,; are alsoN1-neighbors (see Figure 5(a)). If cady, X;4;) N
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Figure 5. Neighborhood relations when enlarging sirset S to anv-setS.

COMME;, X14;) # 0, thena!, %.; > Bi, anda! % > B, i€ %y and i, are
N3-neighbors (see Figure 5(b)).

Case 2:Suppose that; andx; are Nz-neighbors, i.ea] , %; > B;, anda/ x; >
B,»,n. In analogy to Case 1, we can verify that if coy x;,,) N"conu(x;, X;4;) = @,
thenx;,; andx,; are alsaVs-neighbors (see Figure 5(c)) and that if cafy x;., )N
conv(x;, x;4;) # ¥, thenx;,; andx,,; are Ni-neighbors.

Thus if x; andx; are Ni- or Ns-neighbors, therx;,; g\nd X;+; are alsoN;-
or Ns-neighbors, i.e. Scontains noN,-neighbors. Henc& = SU S is an N-
set of (R, ,). Sincex; € S is a neighbor of only one pseudovertex inS
S\ S, we have dinCs(%;)) = dim(Cs(%;)) — 1. The pseudovertice§,;, ;. € S
are neighbors, iff the pseudoverticés x; € S are neighbors. Furthermorg, is
the only neighbor oft;,; € S contained in S. Hence we have diG(x,;)) =
dim(Cs(x))). O

When enlarging amv-set S to anV-setS according to Theorem 4.1 we replace
the cone G(x;) with dim(Cs(X;)) = k; by (k; — 1)-dimensional cones ;) and
Cs(x144)- This is referred to asone decomposition.

Let xo be a nondegenerate vertex ofP {x € R" | Ax < b} that is to be
eliminated, and let K be a convex set such that int(K) and int(K)N (PN Q) =
0. S := {xo} is an N-set of V*(R,,), and we have G(xo) = C(xo), where
C(xp) is identical with the cone with respect to which we derive a convexity cut
cT(x —xo) > 1.

To derive deepe(P, Q2)-cuts, by repeatedly applying Theorem 4.1 we decom-
pose the cone @) gradually into cones with smaller dimension that are also
vertexed in int(K). This is done by the following procedure, whéeprh is a
prechosen maximal decomposition degh= i) =X+t | A e Rg}
an edge of G(%;), andE; its negative extension, i.&, = {y; ;,(A) = X; + Adi; j, |
reRg}

Cone Decomposition Procedure (CDP)

set S 1= {X1} with X1 := xg;
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setdeco := true and t := 0;

While (deco and t < depth) do
if there exists anN-isomorph set of cone edgessR =
{E1,E,, ... ,Ex} and a constrainbl§x < B of Ax < b such
thatfori,k =1,2,..., 2, the following conditions hold:

1. alx=py; intersectsE; U E; at a pointty y; € int(K);

2. if algx = By intersectsk;, thena§£,- < B, anda§ii > P
otherwise;
3. forx,; exactlyn constraints ofAx < b are binding;

A, Xoi; # Xy foOri #k;

thenset S 1 := S U {Xory1, Xoryo, ..., Xpsr}andt ;=1 + 1;
else setdeco := false;
set S:=S,.

For the sets Sderived by CDP the following lemma holds, which can be proved
by induction inz.

LEMMA4.1. LetS = {x1} € V' (R,,) be the initial N-set of CDP, and let
Alo = A andblo := by, where(Aq, by) is the correspondingn, n + 1)-submatrix
of full rank of (A, b) such thatAlxl_bl ForS (r > 1) there exists attn — 7, n +
1)- submatrlx(Alt, bl,) of (Al, 1 bl, ,) such that for allx; € S, all constraints of
A1, x < by, are binding.

Furthermore, for eachN—isomorph setRs, there exists a unique constraint
aj x < B, of A}, < by, such that; € {x € R" | 4] ;x < By, ;} and
E Z{xeR"| al ]x—ﬁlt ;) for all E; € Rg,, and conversely, for each constraint
aj, X < By, of Ay,x < by, there exists a uniqué/-isomorph seRs, such that

E,' C{xeR"| Cllhjx<,81t,j} andE,- Z {x e R" | al,,j‘x_ﬂlt,j} for all El' € RS,-

Therefore, by choosing an inequaliﬂ;ix < B and anN-isomorph set R ful-
filling the conditions in CDP we also have implicitly determined a constnfu@d
B+ such that all the conditions of Theorem 4.1 are fulfilled. Hence, the resulting
set S, is also anN-set and we have di(®s,, (;)) = dim(C (%;)) — 1 for all
X; € St+1 andf]‘ esS.

Starting with § = {x¢}, by repeatedly applying Theorem 4.1 in a way which
ensures that the resulting-sets are contained in int(K), afterstages we have
a sequence olN-sets $suchthat € S, € --- C S with |[S| = 2, and
dim(Cs, (x;)) =n—tforall x; € S,.

EXAMPLE 4.2. Given are a polyhedron P, a nondegenerate veget P, and
a convex set K such thay € int(K). K has been omitted in Figure 6(a), but the
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Figure 6. Decomposition of the cone(&;) by CDP.

intersection points of the boundary oflk€)) and the edges of the respective cones
are indicated by dots. In CDP we start with Alaset $ = {x;}, wherex; := xo,
and a cone §(X1) = X1 + CONgiy 1, i1 2, i13) (See Figure 6(a)). There exist
three N-isomorph sets g = {Ey;} (j = 1, 2, 3). All these sets fulfill the if-
conditions of CDP. We choosegoRand the constraint which describes the right
facet of P. By CDP we get aN-set § = {x1, X2} and the cones {J(x1) = X1 +
condiiy 1, ii12) and G (X2) = X, + CONdiiy 1, iz 2) (See Figure 6(b)). We have
P € con\(Cs (¥1), Cs (X2)). There exist twaV-isomorph sets 5 = {Ey;, B}

(j = 1, 2). By choosing % and the constraint describing the front facet of P we get
S; = (X1, X2, X3, X4} and G, (X;) = X; + condii; 1) with i = 1, 2, 3, 4 (see Figure
6.c). We have RZ con\(Cs, (X1), Cs, (X2), Cs, (¥3), Cs,(¥4)). There exists only one
N-isomorph set B = {Ey1, E21, Es1, E41}. Since there exists no P-describing
constraint which fulfills together with & the if-conditions of CDP, CDP stops
with S:= 'S, < int(K).

5. Decomposition Cuts

When CDP stops, we have aiset S= {xi, x, ... , x>} such that the respective
cones G(x;) are(n—t)-dimensional and vertexed in int(K). In the case ef n, we
have G(x;) = x; € int(K), and by Theorem 3.1 we have ® con\S) C int(K).
Consequently, we have®Q = @, and we do not have to derive(R, ©2)-cut. In
the case of < n, to derive &P, ©2)-cut we specify in this section the conditions of
Theorem 4.1 fov-sets obtained from CDP.

To prove that a cutting plane is@, ©2)-cut it suffices to verify that the cut-
ting plane fulfills the condition of Theorem 4.1. To verify conditions (A) and (B)
of Theorem 4.1 is generally not a problem. However, to verify condition (C) of
Theorem 4.1 can be difficult. The following corollaries will be helpful in verifying
condition (C).
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COROLLARY 5.1. Let theN-setsS,, S;1 € V#°(R,4,) be obtained from CDP,
let x;, € S, and letL, be a face ofC(x;, ) with dim(L;) = 2. If X; € S and

X; ¢ aff(L;,), then we also havéy; ¢ aff(L; ), wherex,,; € S is derived in

the (r + 1)th stage of CDP.

Proof. Sincex;, € S is a nondegenerate pseudovertex, there exists a unique
(n, n 4 1)-submatrix(A,, , b;,) of full rank of (A, b) such thatd,, &;, = b;,. Thus,
we have C#;,) = {x € R" | A, x < b;,}. For the 2-dimensional face,Lof C(%;,)
n—2 constraints ofi; x < b;, are binding. LetA; , b ) be an(n — 2, n)-submatrix
of (A, b;) such that affL;) = {x € R" | A} x = b, }. We prove Corollary 5.1
by contradiction. Suppose that € S, andx; ¢ aff(L; ), and let us assume that
Xy € aff(L;,) for Xxy; € S41. X2y, iS the intersection point of the hyperplane
algx = B and the lineE; UE; (see CDP).

Let (A;, b;) be the uniquén, n + 1)-submatrix of(A, b) such thatd;; = b;.
For the lineE; U E; there exists a uniqué: — 1, n + 1)-submatrix(A; 1y, bi\ (1))
of (A;, b;) such thalE; UE, = {x € R" | A;\yx = b1} (see (25)). Hence, we
havea§£2r+,~ =B, and A\ ;1) %2 4; = by\ (1) By assumption we havé ; € aff(L;,)
which implies A/ %».; = bj . However, because & ¢ aff(L;,) there are at most
n—3 constraints ofi/ x = b] that are also constraints gf, (1,x =b;(1). Therefore,
sincexy o ; Is nondegenerata,gx = B> has to be a constraint @i’;kx = ng. Since
X, € aff(L;) this implies thatal{i,»k = p;r. But this contradicts Condition 2. in
CDP. Hence, we haver ,; ¢ aﬁ(i_ik). O

COROLLARY 5.2. LettheN-setS, € V”*(R,,) be obtained from CDP, let;, €
S, and letL,, be a face ofC(x;) with dim(L; ) = 2. For § N aff(L; ) only the
following cases can occur:

1. S naff(L;) = {x;,}, wherex;, = X;,;

2. § naff(L;) = {x;,, X;,}, wherex;; andXx;, are neighbors;

3.S nafflLy) = {%,.%,. &, 5}, Where Cs (% )law,) = &, and N},

C(xi ) laftw,) S Con\/(U?:l Xi;)-

Proof. With the notation of the proof of Corollary 5.1 we have(aff) = {x €
R' | Ajx =b}}. Let% € S naff(L,) and let(4;, b;) be the corresponding
(n,n + 1)-submatrix of full rank of(A, b) such thatd;¥; = b;. Hence we have
Cx)=1{x¢e R" | A;x < b;} with C(x;) = x; + Condﬁi,l, LNti’z, - ,l/Nli’n), where
u;; are directions of the edges of &). Sincex; € S, N aff(L;,) is nondegenerate,
(A}, D) is a submatrix of A;, b;), and this verifies that din€(%;)lar, ) = 2,

1k Tk
l.e.

C(xi)latf, ) = %i + conei; 1, u;2) V% € S Naff(L,), (27)
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and

E,UE,; forl=172

{x;} otherwise ’ (28)

(Ei’[ U E:l) N aff(l_l'k) = {

where E; = {X; + Ait;; | A e RjYand B, = {X; + Ad;; | A € Ry}

We prove Corollary 5.2 by induction in Fors = 0, Corollary 5.2 is ob-
viously true. Suppose that it holds for all-sets § with p < ¢. Let S;1 =
S U {Xory1, Xor 42, ..., Xor1} be obtained from S= {X1, X5, ... , X} by CDP, and
let Ry = {E1, Es, ..., Ex} be the correspondingy-isomorph set of cone edges.
We have to verify Corollary 5.2 for,$;. For this we distinguish three cases.

Case 1:Suppose that for S aff(L;,) case 1 of Corollary 5.2 holds, i.e, 8
aff(L;,) = {x;,}. Because of (28) there is no pseudovertex i\ {S;,} lying on
the edges E 1, E;, » of the cone ((ii,-)|aﬁ(Lik) or on their negative extensions. Thus,
E, 1 and E, » are also edges of{Ix;,).

Suppose thak;, # E;,, for/ = 1,2. Thenxx,;, ¢ aff(L,) and $;1 N
aff(L;,) = {x;,}. The former follows from (28) and from the construction of CDP,
and the latter follows from Corollary 5.1. Hence, for, SN aff(L; ) case 1 of
Corollary 5.2 holds.

Suppose thaE;, = E,; or E;, = E,,. Hence, by (28) we havéy ., €
aff(L; ), where by construction of CDEx;, is a neighbor ofy;, . It follows from
Corollary 5.1 that 51N aff(L;) = {X;, Xi,}, wherex,, := Xx4;,, i.e. for §11 N
aff(L; ) Case 2 of Corollary 5.2 holds.

Case 2:Suppose that for 31 aff(L;,) case 2 of Corollary 5.2 holds, i.e, 8
aff(L;) = {x;,, X;,}, wherex;, andx;, are neighbors. Sincg,, x;, are nondegen-
erate neighborsy;, lies on an edge of giizﬂaﬁ(Lik) or on its negative extension,
andx;, lies on an edge of g£i1)|aﬁ<|_ik) or on its negative extension. Hence, we
have G, (i) lafi;,) = Xi, + CON&tyy 1) and G, (Xi,)laff;, ) = Xi, +CONEiLjy 7). It
is not hard to verify that the edges Eand E, 1 are neighbors. Sincg, andx;,
are neighbors anddRis N-isomorph, for the cone edgé&s, E;, € Rs, it holds that
I_E,»1 = E;, 1, iff I_E,»2 = E;, 1. Hence, using arguments similar to those for Case 1 we
can show that by construction of CDP and because of (28) and Corollary 5.1 the
following hold.

(a) Suppose thd;, # E;, 1. ThenE, # E;, 1, i.e. the edgeg;, andE;, corres-
pond to edges E; and E, , with /, g > 3. Hence, we havéy ;, , X»1;, & aff(L;,)
and Sy naff(L;) = {x;,, X;,}, i.e. for S 1 Naff(L;, ) case 2 of Corollary 5.2 holds.

(b) Suppose thak;, = E, ;. Then we haveE, = E, ;. Hence, we have
Xoitiy, Xoryi, € Aff(L;,) and Spq Naff(L;,) = (X, Xiy, Xiy, Xi, }, Wherex;, := x4,
andx;, = Xxx4,. Because of the neighborhood relations between pseudover-
tices in $ and $,; which we discussed in the proof of Theorem 4.2 we have
dim(CSt+l()E,-_/.)|aff(L[_k)) =0forj=12234,i.e. Q,t+l(£,-_/.)|aff(L[_k) = X;;. It remains
Lo |t<)je verified that for Q= }_; C(%;)lafi,,) the inclusion Q< conv(J}_, %))

olds.
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Xiq Xip
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Figure 7. Examples of cones fulfilling Case 3 of Corollary 5.2.

It follows from the construction of CDP that we have eithe=Q@ or dim(Q) =
2. In the former case we obviously haveC_Qcon\/(U?=1 x;;) (Figures 5(c), 7(c)).
In the latter case Q is a pointed polyhedron and each facet of Q is 1-dimensional and
contained in an edge of at least one of the congs, ﬂaﬁa_ik). However, each edge

E;; ., of the cone @z‘jﬂaﬁ(uk) or its negative extension,j/_?, contains a pseudovertex
X, € SN aff(L;) \ {x;;}. Suppose that;, € E;J. Thenyx;; andx;, are Ns-
neighbors and we have EN Q = ¢ (Figures 5(b), 7(b)). Suppose thaf € E;, ;.
Thenx;, andx;, are Ni-neighbors and we have BN Q C conwux;,, x;,} (Figures
5(a), 7(a)). Hence, the facets of Q are contained in (i(_))j\é 1%;;) and by Corollary

3.1 we have QC conv(UjL1 %;;). Thus for $,1N aff(L;,) Case 3 of Corollary 5.2
holds.

Case 3:Suppose that forBaff(L; ) Case 3 of Corollary 5.2 holds, i.e. éff, )N
St = {iilv jiza iigv ji4}l CS,(iij)laff(L,'k) = iij ’ andmjzl C(iij”aff(L,»k) g ConV(szl
Xi;). Thus, E, 1 and E; > are not edges of@,»j)|aff(|_ik), i.e. I_E,»j #E, forl =12
By the construction of CDP and because of (28) we have, ¢ aff(L;, ) for j =
1, 2, 3, 4, and because of Corollory 5.1 we have$ aff(L;,) = {X;,, Xi,, Xis, Xi,},
i.e. for Sy Naff(L; ) case 3 of Corollary 5.2 holds. O

For anN-set S derived by CDP we can approximate the polyhedron P by the convex
hull of the cones Qx1), Cs(X2), ... , Cs(X2). To verify that an inequality!”x > §

is a(P, ©2)-cut, in accordance with condition (B) of Theorem 4.1 we have to ensure
that for everyt; € Swithd’x; < § this inequality eliminates only points in the por-
tion of Cs(x;) contained in int(K). For a single cone,G;) a convexity cut derived

in the affine space spanned by(&) fulfills this condition. To fulfill condition (B)

of Theorem 4.1 for the cones;G1), Cs(x2), ... , Cs(X2r) simultaneously, the idea

is to derive a cutting plané’x > § that in the case af’x; < § is in the affine space
spanned by &x;) equivalent to a convexity cut derived w.r.t;(@;). We shall see

with the following proposition that such a cutting plane i€a)-cut.

PROPOSITION 5.1. Let S= {xy, X2, ... , Xz} be an N-set oV”*(R, ) derived
by CDP. Foranyi = 1,2,...,2andj = 1,2,... ,n—t lety; ;(%; ;) be the
intersection point of the edgg; ; = {y;;(A) = % + Aii;; | € RJ} of the
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Eil,l ; Ei]_.l ; Eiz,l
E aff(l-ik) E
= His =
- 1% > - 1%
Xip = Ei,.2 %, Xiy =)
(a) (b)
Eiz.l
E.2 % Enz Ene "Ej2
(d)
Figure 8. Cutting planes in afl_;, ) fulfilling the conditions of Proposition 5.1.
coneCs(x;) = X; + condii; 1, i; 2, - .. , U; ) @and the boundary ofl(K) with the

convention that; ; = oo, 1/, ; = 0, andy; j(oo) = ¢ if such an intersection

point does not exist. An inequalitfx > § fulfilling d’x; # § and
1 2 ot

T~ T~ y e ee
du; > —~i‘j max{(6—d’'x;), 0} for 2t

i=1,
ey (29)
is a (P, Q)-cut.

Proof. Suppose that the inequalit/x > § fulfills the conditions of Proposition
5.1. For this inequality we have to verify the conditions of Theorem 4.1.

LetX; € S such that/’x; > §. It follows from (29) thatd”i; ; > 0 for j =
1,2,...,n—t.Hence, we have &x;) € HY, for all 5; € SNHE,. Since condition
(A) of Theorem 4.1 is fulfilled by assumption, it remains to verifiy conditions (B)
and (C).

Forx; € Swithd’s; < §, the inequality (29) can be written @i; ; > 0 in
the case of.; ; = oo, and asi’y; ; (A, ;) > § otherwise. Hence in the affine space
spanned by ¢x;) the inequalityd’x > § is equivalent to a convexity cut derived
w.r.t. the cone Q,), i.e. d'x > § eliminates withx; only points in the portion of
Cs(X;) contained in int(K). Therefore{’x > § fulfills condition (B) of Theorem
4.1.

To verify condition (C) we consider a vectgyr, which is derived according to
Theorem 3.2. Lef;, € SNH,, and let ;, be a face of C;,) with dim(L;,) = 2
such that withy;, , L;, and

Q=[] CGE)law,) (30)

f,'./. eSﬂaff(Lik)
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7 fuffills the conditions of Theorem 3.2. We havéx;) a1, ) = L;, and by (27)
we have

C(iij)laff(L,'k) = iij + Conqﬁij,l’ ﬁij,Z) v iije SN aff(l—lk)

LetE; = (s = %, + Aidyy | A € RgYand B | = {yi;1(A) = X + Adly; 1 |
A € Ry}, and to simplify notation lef;, := X;,.

Since Q NHY, # Q, dim(Q, NHY,) = 2 andx;, € SNH;, (cf. Theorem 3.2),
the hyperplane f intersects at least one edge of the conéé,-lclgff(Lik) at a point
z;, different fromx;, (Figure 8(a)). However, since by assumptiop@H,; is a
half-line (cf. Theorem 3.2), it follows from the definition of,@hat H, ; intersects
one and only one edge of(ﬁ;l)laff(L,.k). For the same reason the polyhedrop Q
has to be unbounded. Of the alternatives for&f(L;, ) described in Corollary 5.2
there are only two for which Qcan be unbounded.

Case 1:Suppose that 8 aff(L;,) = {X;,}, i.e. Q = C(x;))lart,,) (Figure 8(a)).
Then E, 1 and E, » are also edges of {x;,) (see (28)). In the first variant the
hyperplane H, intersects E , and does not intersect k. Sinced’x;, < §, we
haved”ii;, 1 < 0. On the other hand, becauseigf; > 0 ands—d’%;, > 0 by (29)
we havedit; 1 > 1/x;, 1(8—d"%;)) > 0. This implies that!"ii;, ; = 0, i.e.7, =
iti 1/ |i;, 11l Furthermore, sincé —d’x;, > 0, we have 1}(,»1,1 = 0. However,
1/2i,1 = O is equivalent to E; C int(K), which impliesx + A7 € int(K) for
all x € int(K), » € R{. A similar argument can be used for the second variant in
which H, ; intersects E ;.

Case 2:Suppose that we haversaff(L;,) = {x;,, x;,} wherex;, andx;, are
neighbors. Hence, we have, & C(;Z,»l)|aff(Lik) N C()E,»z)|aff(Lik). Sincex;, andx;,
are nondegenerate we can assume w.Iig,& E; » UE; ,andx;, € E;,, UE, ,.
Hence, E; 1 and E, ; are also edges of the coneg(&,) and G(x;,). In Figure 8 the
edges of Cx;,) and QXx;,) that are also edges ofG;;) and G(x;,) are indicated
by thick lines. Note that by the construction of CDP there always exists a constraint
alx < By of Ax < bsuchthat E,UE, , = E,2UE, , ={x e R" | alx =
Bs} Naff(L;,) and B, 1, E;,1 € {x € R" | alx < B,} N aff(L,,) (cf. condition (B)
of Theorem 4.2 and Lemma 4.1). Since the hyperplapgitiersects one and only
one edge of ©2,~1)|aﬁ(L,.k), we have to consider the following alternatives.

(a) Suppose that the hyperplang;Hhhtersects E ». Then it does not intersect
E;, .1 and we can verify thak, = u;, 1/llu;, 1]l with x + A7, C int(K) for all x e
int(K), A € R as in case 1 (Figure 8(b)).

(b) Suppose that the hyperplangHntersects E 1. Then it does not intersect
E;, 2. We now have to distinguish between tNg- and N3-neighorhood of;, and
Xiy-

Suppose that;, andx;, are Ni-neighbors, i.ex;, € E;, » andx;, € E;, » (Figure
8(c)). Since H, does not intersect,E,, we haved’x;, < §. The hyperplane K}
also does not intersect,f of C(;Z,»z)|aff(|_ik) because otherwise,QH, ; is bounded.

This implies thatd’i;, ; < 0. However, E, 1 is an edge of Qx;,). Because of
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Li,1 > 0and 8-d’%;, > 0 by (29) we therefore hav®ii;, 1 > 1/%;,1(8 —d"%;,) >
0. This impliesd”ii;, 1 = 0 and ¥A;, 1 = 0. Thus we havé;, = ii;,1/|ii;, 1|l and
x + A7 € int(K) for all x € int(K), » € R{ (see Case 1).

Suppose that;, andyx;, are Ns-neighbors, i.ex;, eE, , andx;, e E;_ , (Figure
8(d)). Since diniQ;) =2, there exists.; ; € R" such that

Qi = Yip.1(Aj, 1) + CONEL;, 1, il 1).

We claimd’x;, < §. Indeed, let us assume the contrary, i&x;, > § (we have
by assumption/’x;, # §). It follows from the condition G(%;) < H®, for all x; €
SNHP, of Theorem 3.2 that G lafL,) S HI forall x; € SNH],. Hence, we have
C(xi,) laftLy,) S H:, which contradicts dinQ, NHS,) = 2 (cf. (30)). Thusd’x;, <
5. Because of diQ, N Hfs) = 2 we also haveiTyl-l,l(k'.l,l) < 8. Furthermore,

1

since Q N Hu.s is unbounded, kKb does not intersect the ra[yl-l,l(k'il,l) + Adtiy1 |
L € RZ}. Hence, we have’ii;,; < 0. Thus, with the same argument as above
we can verify that’ii;,; = 0 and J/X,»Z,l = 0 such thaty = i, 1/, 1] and
x + A7 € int(K) for all x € int(K), » € RY.

We have already verified + A7, C int(K) for all x € int(K), » € R{. Sincer,
was chosen arbitrarily, we hawer-condry, r,, ... , 7,) € int(K) for all x € int(K),
which verifies condition (C) of Theorem 4.1. O

In Proposition 5.1 we specified the conditions of Theorem 4.1 forNkeets de-
rived by CDP. An inequality fulfilling Proposition 5.1 is referred to ate@ompos-
ition cut We now have to examine the existence of a decomposition cut.

LEMMAS.1. LetS={x1, xp, ..., xx} be an N-set derived by CDP. There always
exists a cutting plang’x > § with d’x; < § for all x; € S, which fulfills the
conditions of Proposition 5.1.

Proof. By construction of CDP for P= {x € R" | Ax < b} and theN-set S=
{X1, X2, ... , Xz} there exists — ¢ constraints ofAx < b, namelyalx < B1, alx <
Bz, ... al_x<pB,,suchthatfoi =1,2,...,2andj =1,2,... ,n—t the
following hold.

LajXi=p1, agxi=Po ..., a0 5i=PBus;
2. 1f0< )\'i,j <00, thena{yi,]’ ()"i,j) :ﬂl, e, ajT—lyi,j ()\'i,j) :,Bj_]_, a]Ty,-,j ()"i,j) <

Bj a,T+1yi,j()»i,j)=ﬂj+1» v alyi (0 ) =Bt

3. 1If Xi,j = 00, then alTﬁ,»,j =0,... ,a]-T_lﬁl-’j = 0, a]-Tﬁl-’j <0, aﬁlﬁi’j = 0,
., anT_tﬂ,-J :O,

(cf. Lemma 4.1). By defining

n—t 2 p—t - -
d:=— § ‘a; and & :=minmin{d"y; ;(A; ;) | 0<2;; < oo} (31)
par i=1 j=1 ’ ’
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we getd’%; < §. Furthermored”y; ;(A; ;) > 8if0 < A;; < oo, anddit; ; >
0 otherwise. This is equivalent @i, ; > 1/4; j(8 —d"%;) = 1/A;; max{(s —
d’x;), 0}. O

In Proposition 5.1 we gave some conditions to verify that a cutting pldme> §

is a (P, )-cut. Conversely, we can utilize these conditions to derive,&2)-cut

by choosing in advance a set & S of pseudovertices that shall be eliminated.
By doing so, the conditions of Proposition 5.1 can be written as a system of in-
equalities. Every feasible solutio@, §) of these inequalites yields @, 2)-cut

dTx > 6.

Our aim is to derive a deep cutting plane, i.e. a cutting plane that eliminates
as much of each conesG;) = x; + congu; 1, u; 2, ... , U;,—y) With X; € ST as
possible. For this we have to define a (heuristic) measure for the depth of such a
cutting plane.

Setting

t

1 «— i
- iJj
u; =
=

]:

7 it ;1

we have an average direction of the edges of the cqg XZuch that the half-line
E" = {;:(A) = % + Aii; | » € R{} is contained in @;). Letd’™x > § be a
cutting plane such that’x; < § and suppose that'x = § intersects £ aty;(A),
whereA € R{. In general it hold that the largex is, i.e. the larger the distance
from y;(A) to x;, the larger the portion of £x;) that is eliminated by the cutting
planed”x > § usually turns out to be.

Since a cutting plane shall eliminate as much as possible of each of the cones
Cs(x;) with x; € S simultaneously, this leads to the following heuristic measure of
the depth of a cutting plane, whefe:={i € {1,2,... ,2'} | x; € S~}. Setting

1 _

= Ui,
ied |‘0'1| ieg

I
|
=Y
]
=
S
o
ST

we define the depth of a cutting pladéx > § by a measure\(d, §):

§ —d'x
T_
A(d,g): W fOI‘dv>0.
o0 otherwise

By definition of A(d, §) we haved”(x + A(d, §)v) = 8. A(d, §) can be interpreted
as a measure for the average depth of the cutting plfdne> § with respect to
each of the cones{x;) with x; € S=. Therefore, the larget (d, §) is, the deeper
the cutting plane/’x > § usually is. Let us consider the following minimization
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Figure 9. Decomposition cuts derived w.r.t. different decomposition depths.

problem.
minimize d™v
subjectto  d"v > o
—dx+8 =1
d’x; —8 <—o forx; e S°
d'5; =8 > ¢ fork € S\S® (52)
d"y;j(ij)—8 > 0 fork € S and 0< A;; < oo
d'i;; > 0 for¥ € ST andh;; = oo
d'i;; > 0  fork; € S\S*

wherep € R is sufficiently small. By solving (32) we get a cutting plaffe: > §
with the depthA(d, §) = 1/d"v that fulfills the conditions of Proposition 5.1. If
no solution of (32) exists, we have to augment the setN®te that for a smalp
the solvability of (32) is ensured with"S= S by Lemma 5.1.

EXAMPLE 5.1. In Figure 9 decomposition cuts are indicated that are derived

w.r.t. N-sets obtained at different stages of CDP (see Example 4.2). The decom-
position cut in Figure 9(a), which is derived w.rg§ S= {x1 = xo}, is equivalent

to thexp-eliminating intersection cut. We can see that by increasing decomposition
depth the decomposition cut eliminates a larger portion fifit(K).

6. Numerical Experiments

To compare the performance of decomposition cuts with the performance of con-
vexity cuts, we applied both types of cuts to pure cutting plane algorithms for
concave minimization. A concave minimization problem is as follows:

min{ f(x) | x € P}, (33)
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where f : R" — R is a concave function and P is a full-dimensional polytope
in R". It is well-known that there exists a vertex of P, which is a global optimum.
Hence, we can restrict our search to the set of verticd® éf P. Accordingly,

xo € V(P) is said to be a local star optimum ff(xg) < f(x) forall x € V(P)
adjacent taxg. Often it suffices to find amr-optimal solution(e € R™), where

X € P is said to be-optimal if f(x) < f(x) + € for all x € P. A cutting plane
algorithm to determine astoptimal solution of (33) consists of two main steps.

Initialization: Set F&::P,f = 00, Q::{xeR”|f(x)<f—e},i::0.

Step 1:Find a local star optimumy, € V(P,). If f(xj) < f, then setf := f(xi)
andx := x{. Go to Step 2.

Step 2:Derive a(P;, Q)-cuth/x > 6; suchthat!x} < 6;,and setP.; :== P,N{x €
R" | hiTx > 6;}. If P;;1 = @, thenx is ane-optimal solution, otherwise set
i := i+ 1and return to Step 1.

Based on this scheme we constructed an algorithm using intersection cuts (cf. Sec-
tion 1), termed the Intersection Cut Algorithm (ICA), and an algorithm using
decomposition cuts, the Decomposition Cut Algorithm (DCA). In these algorithms
Step 1 and Step 2 were performed as follows.

Step 1:First determine a vertexy € V(P;) by solving mir(c/x | x € P;}, where
¢; € [—10,107 is a uniformly distributed random vector. Starting wjth=
0, examine the vertices adjacentipand determine from among them the
vertexx;,1 with the smallest objective value. ff(x;;1) < f(x;), then set
j :=j + 1and repeat this process, otherwisexget= x;.

Step 2:Since f (x) is concave, the setk {x e R" | f(x) > f—e} is convex. We
have int(K)N (P N ) = @ andx} € int(K). To eliminate the nondegenerate
vertexx € V(P:) in
ICA we derive an intersection cut w.r.t. K and Bnd in

DCA we start at K and FCDP with a maximal decomposition depth of
level 3, and derive with the resulting-set S a decomposition cut
by solving (32) in which S := S.

If in DCA there exist two or moreV-isomorph sets each of which fulfills the if-
conditions of CDP, we have to choose an appropriate candidate. For this purpose
we applied the followingN-isomorph-set rulewhere M < R* is a sufficiently

large constant.

N-isomorph-set rulelet Ry = {E1, Ez, ... , Ex} be anN-isomorph set, and let
Nij; € R* be chosen so that in the casemfZ cl(K), y; j (n: ;) is the point
of intersection of the cone edd& = {y;, ;(A) = X; + Au;j, | A € Rg}

and the boundary of k), andr; ; = M otherwise. Defing = 2 Y2 &,
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andz(Rs) = 2—1, Zf;l i j;(mi, ;). From all N-isomorph sets fulfilling the if-
conditions we choose the one for whifth — z(Rg,) || is minimal.

For a chosenV-isomorph set B there may also exist more than one constraint
algx < B+ fulfilling the if-conditions of CDP. In this case we applied the following
constraint rule wheren; ; are defined as in th¥-isomorph-set rule.

Constraint rule: If E; intersects the hyperplam%x = B, then determing; ; (/;)
R* such thaty; ; (&, (Is)) is the point of intersection of; anda/x = B,.
Otherwise set; ; (I;) = n; ;. Defined(l;) = ma>g.2’:l i i (L) — Yiji
(ni.;)1l. From all constraintszgx < ﬁll,agx < By - - ,aliu)x < B, ful-
filling the if-conditions for R, we choose the one maximiziafl,).

The algorithms were coded in Pascal 7.0 and run on a Pentium-90 PC. To com-
pare the performance of the algorithms, we applied them to concave minimization
problems of the form

mln{f&(x) | Anx<bna-x>0}a
where
- n—1 n
n 1 nn+1)

A, = : : : and b, = > e,

n 1---n-2 n-1
ande is a vector ofn ones. The values of the functiorfs : R" — R,s = 1, 2, 3,
are defined at = (&1, &,,...,&,) e R" by

i@ = b+ Yoot 2y — B2 262 4t ngR:
fo(x) = —(EL+ 265+ -+ +nE)) - IN(A+ &L + - + &));
yi = 0,42-(1,2,...,n)7

3 .
f3() = —max|ix —yill2 with  y» = 0,5-¢
a y3 =0,3-n—=1,n-2,...,07.

The systemd,x < b, is taken from Konno [12] and the function$ : R" — R
are modifications of concave functions, which can be found in Horst et al. [10].

The test problems are very difficult to solve by cutting plane algorithms. They
were chosen, because they provide typical examples of the performance of ICA
and DCA in a very compact way.

We searched only for-optimal solutions, where the respectivevere chosen
such that the objective value of aroptimal solution differed from the optimal
value by 1% at most. Because the search for a local star optimum contains stochastic
elements, we used the cutting plane algorithms 50 times for each test problem.
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Table 1. Computational results of ICA and DCA.

ICA DCA
Average Mean variation Average Mean variation
fet. n cuts times cuts time s cuts times cuts times
bt 6 25 039 0.7 0.10 1.7 1.22 1.1 0.67
b 7 3.6 0.75 0.7 0.21 1.7 1.68 1.2 1.02
bt 8 5.8 165 0.9 0.28 1.8 2.32 1.7 1.85
it 9 9.5 385 15 0.70 23 4.07 1.6 241

f1 10 217 1424 4.2 359 27 659 25 5.11
f1 11 835 13519 259 6623 28 864 51  14.39
1 12 - - - - 95 3929 149  63.49
1 13 - - - - 12.0 66.25 21.7 125.35

f2 6 16.4 350 4.9 1.38 2.7 202 04 0.22

f2 7 425 16.67 7.6 4.63 2.7 2.64 0.5 0.46
f2 8 2449 467.24 429 162.18 4.2 5.35 2.0 2.43
f2 9 - - - - 6.6 1124 49 11.24
fo 10 - - - - 10.1 21.23 6.0 13.36
fo 11 - - - - 72.8 269.90 20.0 108.38

f3 6 7.1 138 0.8 0.19 11 1.04 03 0.29
f3 7 9.1 235 05 0.23 2.0 255 0.0 0.17
/3 8 17.3 7.07 33 1.82 2.0 3.46 0.0 0.05
f3 9 38.8 29.10 16.6 17.83 3.3 6.35 0.5 0.75
fz 10 162.1 391.81 66.9 250.30 4.6 9.57 0.5 1.04

fz 11 - - - - 9.2 27.02 59 20.52
fz3 12 - - - - 21.3 9254 19.1 105.34
f3 13 - - - - 48.1 28258 25.0 169.91

From the 40 fastest results we calculated the average number of cutting planes
needed (cuts), the average time needed in seconds (time s.), and the respective
mean variations. The results of the tests are shown in Table I, where a hyphen
indicates, that the algorithm derived more than 400 cutting planes for at least 10
out of the 50 tests.

Both ICA and DCA are very sensitive to modifications. For example, by re-
placing the above procedure for searching for a local star optimum by Zwart's
Procedure Il (cf. Zwart [24]), in both algorithms the number of cutting planes
required increased by up to 50%. Similar observations were made whe¥-the
isomorph-set and constraint rule in CDP were modified. The following example
may help to explain the differences in performance of ICA and DCA.

EXAMPLE 6.1. Let us consider the concave minimization problem

min{—x"Ex +e'x |0 < x < e}, (34)
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(a) (b)

Figure 10. An intersection cut and a corresponding decomposition cut of level 1.

whereE = diag(1, 1, ... , 1) denotes the unit matrix andis a vector ofn ones.
Each vertex of the unit hypercube W {x € R" | 0 < x < e} is a global optimum
of (34) with objective value 0. Lety be an arbitrary vertex of W and let the convex
set K defined by K= {x ¢ R" | —x"Ex +e’x > —¢}, wheree > 0 is a prechosen
tolerance.

Let V/ be the portion of polyhedron volume removed hyeeliminating inter-
section cut and let ¥ be the portion of polyhedron volume removed by the cor-
responding decomposition cut, wheréenotes the level of decomposition depth
in CDP (see Figures 10(a), 10(b)). For smalle have \} ~ - and V2 ~ -2,
ie.VPlixn.(n—1)....-(n—1t+1) V. Thus forr = 3, a decomposition cut
removes a polyhedron volume of W which is approximaigly — 1) (n — 2) times
the polyhedron volume of W that is removed by an intersection cut.

According to Example 6.1 decomposition cuts become with increasing dimension
more and more superior to intersection cuts. Furthermore, we can see that with
increasing dimension the benefit of a further cone decomposition in CDP also
increases. Based on the numerical experiments this leads us to assume, that in
algorithms which use convexity cuts, the replacement of convexity cuts by decom-
position cuts can lead to a substantial improvement in performance.
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